The entorhinal cortex is involved in conditioned odor and context aversions
نویسندگان
چکیده
In a natural environment, avoidance of a particular food source is mostly determined by a previous intake experience during which sensory stimuli such as food odor, become aversive through a simple associative conditioned learning. Conditioned odor aversion learning (COA) is a food conditioning paradigm that results from the association between a tasteless scented solution (conditioned stimulus, CS) and a gastric malaise (unconditioned stimulus, US) that followed its ingestion. In the present experimental conditions, acquisition of COA also led to acquisition of aversion toward the context in which the CS was presented (conditioned context aversion, CCA). Previous data have shown that the entorhinal cortex (EC) is involved in the memory processes underlying COA acquisition and context fear conditioning, but whether EC lesion modulates CCA acquisition has never be investigated. To this aim, male Long-Evans rats with bilateral EC lesion received CS-US pairings in a particular context with different interstimulus intervals (ISI). The results showed that the establishment of COA with long ISI obtained in EC-lesioned rats is associated with altered CCA learning. Since ISI has been suggested to be the determining factor in the odor- and context-US association, our results show that the EC is involved in the processes that control both associations relative to ISI duration.
منابع مشابه
Taste-potentiated odor aversion learning in rats with lesions of the insular cortex.
The current study assessed the influence of excitotoxic lesions of the insular cortex (IC) on taste-potentiated odor aversion (TPOA) learning. Water-deprived rats initially received a single odor-toxicosis or odor/taste-toxicosis pairing and were subsequently tested, in separate trials, with the odor and the taste stimulus. Indicating TPOA, neurologically intact rats conditioned with the odor/t...
متن کاملEffects of lesions of the bed nucleus of the stria terminalis, lateral hypothalamus, or insular cortex on conditioned taste aversion and conditioned odor aversion.
The effects of permanent forebrain lesions on conditioned taste aversions (CTAs) and conditioned odor aversions (COAs) were examined in 3 experiments. In Experiment 1, lesions of the bed nucleus of the stria terminalis had no influence on CTA or COA acquisition. Although lesions of the lateral hypothalamus induced severe hypodipsia in Experiment 2, they did not prevent the acquisition of CTAs o...
متن کاملInteractions between conditioned and unconditioned flavor preferences.
Five experiments investigated how rats' conditioned preferences or aversions for aqueous odors paired with sucrose or salt are affected by their unconditioned response to those tastes. Rats preferred an odor paired with 30% sucrose over an odor paired with 5% sucrose when both were presented in 5% sucrose, but they showed no preference or, if thirsty, showed the reverse preference, when the odo...
متن کاملFos and Egr1 expression in the rat brain in response to olfactory cue after taste-potentiated odor aversion retrieval.
When an odor is paired with a delayed illness, rats acquire a relatively weak odor aversion. In contrast, rats develop a strong aversion to an olfactory cue paired with delayed illness if it is presented simultaneously with a gustatory cue. Such a conditioning effect has been referred to as taste-potentiated odor aversion learning (TPOA). TPOA is an interesting model for studying neural mechani...
متن کاملThe effect of Gallic acid on prenatal entorhinal cortex and CA1/CA3 hippocampal areas in trimethyltin intoxication rat
Background: Prenatal intoxication with trimethyletin (TMT) induces widespread neuronal death in the central nervous system by inducing oxidative stress. The aim of this study was to evaluate the antioxidant effect of gallic acid (GA) on the neuronal density of the entorhinal cortex, hippocampal pyramidal cells and oxidative stress parameters in the fetal forebrain following TMT intoxication. ...
متن کامل